Aufgabe 1: Zweidimensionale Optimierung und Kreuzpreis-Elastizitäten

(15 Punkte)

Sie betreiben ein gefeiertes 3-Sterne Restaurant. Sie bieten nur ein Menü und eine dazu passende Weinbegleitung an. Die Nachfrage für das Menü sei x_1 und die Nachfrage für die Weinbegleitung sei x_2 . Beide Nachfragen hängen jeweils vom Preis p_1 des Menüs und vom Preis p_2 der Weinbegleitung ab. Konkret sind die jeweiligen Nachfragefunktionen gegeben als:

$$x_1 = 200 - 2 p_1 - p_2$$
 und $x_2 = 250 - 2 p_2 - p_1$.

Es gilt p_1 , $p_2 > 0$ und $x_1, x_2 > 0$.

- a) Welche Preise setzen Sie für Menü und Weinbegleitung an, wenn Sie den Umsatz Ihres Restaurants maximieren wollen? (12 Punkte)
- b) Sind Weinbegleitung und Menü zueinander Substitute oder Komplemente? Begründen Sie mittels einer Preis-Elastizität und ökonomisch intuitiv, idealerweise in einem Satz. (3 Punkte)

Aufgabe 2: Zweidimensionale Optimierung und Kreuzpreis-Elastizitäten (15 Punkte)

Sie betreiben ein gefeiertes 3-Sterne Restaurant. Sie bieten zwei Menüs an. Die Nachfrage für das fleischlastige Menü 1 "alles vom Rind" sei x_1 und die Nachfrage für das "vegane Hippster" Menü 2 sei x_2 . Beide Nachfragen hängen jeweils vom Preis p_1 des ersten Menüs und vom Preis p_2 des zweiten Menüs ab. Konkret sind die jeweiligen Nachfragefunktionen gegeben als:

$$x_1 = 200 - 2 p_1 + p_2$$
 und $x_2 = 260 - 2 p_2 + p_1$.

Es gilt p_1 , $p_2 > 0$ und $x_1, x_2 > 0$.

- c) Welche Preise setzen Sie für die jeweiligen Menüs an, wenn Sie den Umsatz Ihres Restaurants maximieren wollen? (12 Punkte)
- d) Sind die beiden Menüs zueinander Substitute oder Komplemente? Begründen Sie mittels einer Preis-Elastizität und ökonomisch intuitiv, idealerweise in einem Satz. (3 Punkte)